dc.data.json | { "@context": { "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfs": "http://www.w3.org/2000/01/rdf-schema#", "xsd": "http://www.w3.org/2001/XMLSchema#" }, "@graph": [ { "@id": "http://54.191.234.158/entities/resource/Viscous_flow--Mathematical_models", "@type": "http://schema.org/Intangible" }, { "@id": "http://hdl.handle.net/1928/10674", "@type": "http://schema.org/WebSite" }, { "@id": "http://54.191.234.158/entities/resource/Gas_dynamics--Mathematical_models.", "@type": "http://schema.org/Intangible" }, { "@id": "http://54.191.234.158/entities/resource/Fluid_Dynamics", "@type": "http://schema.org/Intangible" }, { "@id": "http://hdl.handle.net/1928/6694", "@type": "http://schema.org/WebSite" }, { "@id": "http://54.191.234.158/entities/resource/Navier-Stokes_equations--Numerical_solutions.", "@type": "http://schema.org/Intangible" }, { "@id": "http://54.191.234.158/entities/resource/Cherepanov_Pavlo", "@type": "http://schema.org/Person" }, { "@id": "http://hdl.handle.net/1928/9810", "@type": "http://schema.org/CreativeWork", "http://purl.org/montana-state/library/associatedDepartment": { "@id": "http://54.191.234.158/entities/resource/University_of_New_Mexico.__Dept._of_Mathematics_and_Statistics" }, "http://purl.org/montana-state/library/degreeGrantedForCompletion": "Mathematics", "http://purl.org/montana-state/library/hasEtdCommitee": { "@id": "http://54.191.234.158/entities/resource/1928/9810" }, "http://schema.org/about": [ { "@id": "http://54.191.234.158/entities/resource/Viscous_flow--Mathematical_models" }, { "@id": "http://54.191.234.158/entities/resource/Gas_dynamics--Mathematical_models." }, { "@id": "http://54.191.234.158/entities/resource/Navier-Stokes_equations--Numerical_solutions." }, { "@id": "http://54.191.234.158/entities/resource/Shock_waves--Mathematical_models." }, { "@id": "http://54.191.234.158/entities/resource/Fluid_Dynamics" }, { "@id": "http://54.191.234.158/entities/resource/Kinetic_Theory" } ], "http://schema.org/author": { "@id": "http://54.191.234.158/entities/resource/Cherepanov_Pavlo" }, "http://schema.org/dateCreated": "July 2009", "http://schema.org/datePublished": "2009-08-27T21:03:36Z", "http://schema.org/description": "Continuum mechanics and kinetic theory are two mathematical theories with fundamentally\ndifferent approaches to the same physical phenomenon. Continuum mechanics\ntogether with thermodynamics treat a substance (a gas or a fluid) as a\ncontinuous medium and describes the evolution of its macro characteristics via application of the conservation laws to small packets of the substance. Kinetic theory attempts to describe the evolution of the macro parameters by treating a substance as a family of colliding objects. The number of objects must be large enough so a statistical approach can be taken.\n\nIn this work we introduce a numerical scheme to solve 1-D Bhatnagar-Gross-Krook model equations and examine the formation of a stationary viscous shock. Obtained results are compared to a stationary numerical solution of 1-D Navier-Stokes equation with a similar set of shock forming conditions.", "http://schema.org/inLanguage": "en_US", "http://schema.org/isPartOf": [ { "@id": "http://hdl.handle.net/1928/10674" }, { "@id": "http://hdl.handle.net/1928/6694" } ], "http://schema.org/name": "Shock formation properties of continuum and kinetic models" }, { "@id": "http://54.191.234.158/entities/resource/Kinetic_Theory", "@type": "http://schema.org/Intangible" }, { "@id": "http://54.191.234.158/entities/resource/Shock_waves--Mathematical_models.", "@type": "http://schema.org/Intangible" } ]} | |