LoboVault Home

BPSK system analysis using MEMS filters


Please use this identifier to cite or link to this item: http://hdl.handle.net/1928/6806

BPSK system analysis using MEMS filters

Show full item record

Title: BPSK system analysis using MEMS filters
Author: Ho, David
Advisor(s): Abdallah, Chaouki
Committee Member(s): Abdallah, Chaouki
Christodoulou, Christos
Olsson, Roy
Department: University of New Mexico. Dept. of Electrical and Computer Engineering
Subject: MEMS
BPSK analysis
LC Subject(s): Microelectronics
Degree Level: Masters
Abstract: For some military applications, there exists a need for small custom radios. These radios need to be able to survive extreme environments and transmit the necessary data. This can be achieved by using banks of micromechanical filters. These small filters are post-CMOS compatible, allowing hundreds of high-Q filters to be incorporated over a typical RF transceiver die. Selection of these filters allows the band, channel, and bandwidth to be rapidly changed in operation. Having integrated Microelectromechanical Systems (MEMS) filters eliminates the need for off-chip components such as crystal references and Surface Acoustic Wave (SAW) filters. This allows for smaller, low power, high performance, shock hardened radios to be developed. This thesis will examine the simulation and system analysis of MEMS filters. In past literature, there have been advances in transceiver architecture that have reduced the number of parts, but many of these approaches have sacrificed RF performance. The zero-IF and LOW-IF direct conversion sacrifices RF performance, but is good enough for normal applications. For specific military applications, this RF sacrifice is not acceptable. This thesis will simulate a BPSK architecture to develop an understanding that the post-CMOS filters can reliably be trusted upon in communication systems. The initial system to be simulated will be a 5-channel MEMS filter. This thesis will also present actual results of the 5-channel MEMS filter.
Graduation Date: May 2008
URI: http://hdl.handle.net/1928/6806

Files in this item

Files Size Format View
Ho_MSThesis_4_15_08_final.pdf 2.321Mb PDF View/Open
Ho_MSThesis_4_15_08_final.pdf 2.321Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record

UNM Libraries

Search LoboVault


My Account