Show simple item record

dc.contributor.authorAbdallah, Chaouki T.
dc.contributor.authorDorato, Peter
dc.contributor.authorFamularo, Domenico
dc.date.accessioned2012-04-07T16:51:17Z
dc.date.available2012-04-07T16:51:17Z
dc.date.issued1999-10
dc.identifier.citationIEEE Transactions on Automatic Control, 44(10): 1894-1900en_US
dc.identifier.issn0018-9286
dc.identifier.urihttp://hdl.handle.net/1928/20329
dc.descriptionDigital Object Identifier : 10.1109/9.793731en_US
dc.description.abstractDoyle et al. (1992) presented an algorithm for analytic phase margin control design. Without special care, however, the compensator computed with this algorithm may not be a real rational function, The problem is evident when the plant has real unstable poles. In this case the algorithm requires a mapping of real points into complex values, and it is not clear that the resulting compensator has real coefficients. The purpose of this paper is to show how a complex mapping required in this algorithm can always be selected so that the compensator does have real coefficients.en_US
dc.description.sponsorshipIEEEen_US
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.subjectAlgorithm design and analysisen_US
dc.subjectChaosen_US
dc.subjectAnalytic positiveen_US
dc.subjectinterpolationen_US
dc.subjectphase margin optimizationen_US
dc.subjectstrict Schuren_US
dc.titleAnalytic phase margin designen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record