LoboVault Home

Commutators and dyadic paraproducts on weighted Lebesgue spaces


Please use this identifier to cite or link to this item: http://hdl.handle.net/1928/11139

Commutators and dyadic paraproducts on weighted Lebesgue spaces

Show full item record

Title: Commutators and dyadic paraproducts on weighted Lebesgue spaces
Author: Chung, Dae-Won
Advisor(s): Pereyra, Maria Cristina
Committee Member(s): Pereyra, Maria Cristina
Embid, Pedro
Blair, Mattew
Perez, Carlos
Department: University of New Mexico. Dept. of Mathematics and Statistics
Subject(s): Commutator
LC Subject(s): Commutators (Operator theory)
Lebesgue integral.
Shift operators (Operator theory)
Degree Level: Doctoral
Abstract: We prove that the operator norm on weighted Lebesgue space L^2(w) of the commutators of the Hilbert, Riesz and Beurling transforms with a BMO function b depends quadratically on the A2 characteristic of the weight, as opposed to the linear dependence known to hold for the operators themselves. It is known that the operator norms of these commutators can be controlled by the norm of the commutator with appropriate Haar shift operators, and we prove the estimate for these commutators. For the shift operator corresponding to the Hilbert transform we use Bellman function methods, however there is now a general theorem for a class of Haar shift operators that can be used instead to deduce similar results. We invoke this general theorem to obtain the corresponding result for the Riesz transforms and the Beurling-Ahlfors operator. We can then extrapolate to L^p(w), and the results are sharp for 1 < p < 1. We extend the linear bounds for the dyadic paraproduct on L^2(w) into several variable setting using Bellman function arguments, that is, we prove that the norm of the dyadic paraproduct on the weighted Lebesgue space L^2_{R^n}(w) is bounded with a bound that depends on [w]_{A^d_2} and \|b\|_{BMO^d} at most linearly. With this result, we can extrapolate to L^p_{R^n}(w) for 1 < p < \infty. Furthermore, Bellman function arguments allow us to present the dimensionless linear bound in terms of the anisotropic weight characteristic.
Graduation Date: July 2010
URI: http://hdl.handle.net/1928/11139

Files in this item

Files Size Format View Description
Signature_Red.pdf 297.1Kb PDF View/Open Red box signature page
main.pdf 599.8Kb PDF View/Open Main Dissertation

This item appears in the following Collection(s)

Show full item record

UNM Libraries

Search LoboVault

Advanced Search


My Account