LoboVault Home

Viscous flow past plates

LoboVault

Please use this identifier to cite or link to this item: http://hdl.handle.net/1928/21093

Viscous flow past plates

Show simple item record

dc.contributor.author Ling, Xu
dc.date.accessioned 2012-08-28T18:27:44Z
dc.date.available 2012-08-28T18:27:44Z
dc.date.issued 2012-08-28
dc.date.submitted July 2012
dc.identifier.uri http://hdl.handle.net/1928/21093
dc.description.abstract I devise a numerical method of high order in space (FDMHS) to simulate flow past a finite plate and a semi-infinite plate. The method solves the incompressible Navier-Stokes equation in the stream function-vorticity formulation. The focus is to study a fundamental problem in fluid dynamics, namely, flow past sharp edges. Resolving this flow structure is difficult, in particular at early times. The difficulty is due to the fact that large velocity gradients and vorticity are present in a very thin boundary layer attached to the plate initially. FDMHS is a splitting method, implicit in time and uses compact fourth order finite differences. FDMHS has demonstrated satisfactory performance in our numerical simulations. For the finite plate case, three background flow are used: impulsively started, uniformly accelerated, and oscillating. Resolved computations show structure of the boundary layer separation and roll-up from very early times to relative large times. For the impulsively started, the details of vorticity structure at early times have been studied. We resolved the region of negative vorticity along the plate induced by and entrained into the leading vortex. A secondary entrainment of positive vorticity into the region of negative vorticity is also found. The maximum velocity decays as $t^{-1/4}$ over a large initial time interval. For the uniformly accelerated, we show evolution in the appropriate non-dimensional variables, and find agreement with scaling laws observed in experiments. For the oscillating, we compared the viscous simulation using FDMHS with an inviscid vortex sheet method. Both are in excellent agreement at early times. There are difference at later times. most likely caused by wall vorticity which is not accounted for by the vortex sheet model. The shed circulation is independent of viscosity initially for all three background flows. The effect of viscosity on the vorticity evolution and on quantities such as the shed circulation, core trajectory and vorticity, vortex size and width are also presented. For the semi-infinite plate case, we derived the scaling rule and verified it numerically. en_US
dc.description.sponsorship Xsede en_US
dc.language.iso en_US en_US
dc.subject flow en_US
dc.subject plates en_US
dc.subject singular flow en_US
dc.subject Reynolds number en_US
dc.subject fourth order en_US
dc.subject.lcsh Viscous flow.
dc.subject.lcsh Vortex-motion.
dc.subject.lcsh Plates (Engineering)--Aerodynamics.
dc.subject.lcsh Navier-Stokes equations--Numerical solutions.
dc.title Viscous flow past plates en_US
dc.type Dissertation en_US
dc.description.degree Mathematics en_US
dc.description.level Doctoral en_US
dc.description.department University of New Mexico. Dept. of Mathematics and Statistics en_US
dc.description.advisor Nitsche, Monika
dc.description.committee-member Sulsky, Deborah
dc.description.committee-member Lau, Stephen
dc.description.committee-member Vorobiefff, Peter


Files in this item

Files Size Format View Description
main.pdf 17.10Mb PDF View/Open dissertation

This item appears in the following Collection(s)

Show simple item record

UNM Libraries

Search LoboVault


Browse

My Account