LoboVault Home

Utilizing equivalent circuits to describe the strain- and temperature-dependence of electromagnetic metamaterials


Please use this identifier to cite or link to this item: http://hdl.handle.net/1928/17464

Utilizing equivalent circuits to describe the strain- and temperature-dependence of electromagnetic metamaterials

Show simple item record

dc.contributor.author Arritt, Brandon
dc.date.accessioned 2012-02-01T17:57:00Z
dc.date.available 2012-02-01T17:57:00Z
dc.date.issued 2012-02-01
dc.date.submitted December 2011
dc.identifier.uri http://hdl.handle.net/1928/17464
dc.description.abstract Electromagnetic metamaterials have demonstrated unique and unprecedented behaviors in a laboratory setting. They achieve these novel properties by utilizing geometry and structure, as opposed to a strict reliance on chemical composition, to dictate their interactions with electromagnetic (EM) radiation. As such, metamaterials significantly expand the toolkit from which engineers can draw when designing devices that interact with EM waves. However, the flexibility afforded by these structures also implies environmental sensitivities not seen in traditional material systems. Some recent efforts have borne this out, demonstrating significant strain- and temperature-dependence in metamaterial samples. To date, little has been done to fundamentally understand the mechanisms driving these dependencies. This understanding is crucial for developing engineering-quality predictions of the EM performance of metamaterial structures in a relevant environment, a crucial step in transitioning this technology from laboratory novelty to fielded capability. This study leverages equivalent circuit models to understand and predict the strain- and temperature-dependent EM properties of metamaterial structures. Straightforward analytic expressions for the equivalent circuit parameters (resistance, inductance, capacitance) detail the strain-induced changes in geometry as well as the temperature-dependence of the metamaterial’s constituent materials. These expressions are initially utilized to predict the strain-dependent shift in resonant frequency, a key descriptor of the metamaterial’s EM behavior. These same expressions are then utilized to describe the metamaterial’s strain- and temperature-dependent EM constitutive properties (permittivity, ε, and permeability, µ), which are critical for solving Maxwell’s equations and performing EM simulations within the material. This study focused on the Electric-LC (ELC) resonator, a design commonly used to provide a tailored response to the electric field of the EM wave. However, the author believes that the same process, and similar analytic expressions for the circuit parameters and constitutive properties, could be used to successfully predict the strain- and temperature-dependence of other metamaterial structures, to include Split-Ring-Resonators (SRRs), a design commonly used to provide a tailored magnetic response to EM waves. en_US
dc.description.sponsorship Air Force Office of Scientific Research en_US
dc.language.iso en_US en_US
dc.subject metamaterial en_US
dc.subject electromagnetic en_US
dc.subject mechanical strain en_US
dc.subject temperature en_US
dc.subject constitutive properties en_US
dc.subject circuits en_US
dc.subject.lcsh Metamaterials--Electromechanical analogies.
dc.subject.lcsh Electric resonators.
dc.title Utilizing equivalent circuits to describe the strain- and temperature-dependence of electromagnetic metamaterials en_US
dc.type Dissertation en_US
dc.description.degree Engineering en_US
dc.description.level Doctoral en_US
dc.description.department University of New Mexico. Dept. of Mechanical Engineering en_US
dc.description.advisor Khraishi, Tariq
dc.description.committee-member Smith, David
dc.description.committee-member Shen, Yu-Lin
dc.description.committee-member Welsh, Jeffry

Files in this item

Files Size Format View
Dissertation_bja_20111113.pdf 5.178Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

UNM Libraries

Search LoboVault


My Account