LoboVault Home
 

Functional 2D nanoparticle/polymer array : interfacial assembly, transfer, characterization, and coupling to photonic crystal cavities

LoboVault

Please use this identifier to cite or link to this item: http://hdl.handle.net/1928/13185

Functional 2D nanoparticle/polymer array : interfacial assembly, transfer, characterization, and coupling to photonic crystal cavities

Show full item record

Title: Functional 2D nanoparticle/polymer array : interfacial assembly, transfer, characterization, and coupling to photonic crystal cavities
Author: Xiong, Shisheng
Advisor(s): Brinker, C. Jeffrey
Committee Member(s): Datye, Abhaya
Luk, Tingshan
Grey, John K.
Department: University of New Mexico. Dept. of Chemical and Nuclear Engineering
Subject(s): Nanoparticle/polymer monolayer array, nanocomposite, Evaporation Induced Self-Assembly (EISA), E-beam lithography, patterning, energy transfer, catalysis, photonic crystal, Raman spectroscopy
LC Subject(s): Monomolecular films.
Nanocomposites (Materials)
Nanoparticles.
Quantum dots.
Self-assembly (Chemistry)
Photonic crystals.
Degree Level: Doctoral
Abstract: We developed a universal, facile and robust method to prepare free-standing, ordered and patternable nanoparticle/polymer monolayer arrays by evaporation-induced self-assembly at a fluid interface. The ultra-thin monolayer nanoparticle/polymer arrays are sufficiently robust that they can be transferred to arbitrary substrates, even with complex topographies. More importantly, the Poly (methyl methacrylate) (PMMA) in the system serves as a photoresist enabling two modes of electron beam (e-beam) nanoparticle patterning. These ultra-thin films of monolayer nanoparticle arrays are of fundamental interest as 2D artificial solids for electronic, magnetic and optical properties and are also of technological interest for a diverse range of applications in micro- and macro-scale devices including photovoltaics, sensors, catalysis, and magnetic storage. By co-assembly with block co-polymers, the nanoparticles were selectively positioned in one specific phase, representing a high throughput route for creating nanoparticle patterns. The self-assembly process was investigated by combined in-situ grazing incidence small angle x-ray scattering (GISAXS) and numerical simulation. By e-beam irradiation of free-standing 2D NP/polymer arrays, anisotropic nanowire arrays have been fabricated. Additionally, preliminary investigation on assembly of binary nanoparticle arrays has also been introduced, serving as promising future directions of interfacial assembly. viii Controlling the rate of spontaneous emission and thus promoting the photon generation efficiency is a key step toward fabrication of Quantum dot based single-photon sources, and harnessing of light energy from emitters with a broad emitting spectrum. Coupling of photo emitters to photonic cavities without perturbing the optical performance of cavities remains as a challenge in study of Purcell effect based on quantum electrodynamics. Taking advantage of interfacial assembly and transfer, we have achieved controlled deposition of quantum dots into high Q photonic microcavities and studied the modification of their optical properties. Anomalous enhanced spontaneous emission and Fabry-Perot resonance have been observed.
Graduation Date: July 2011
URI: http://hdl.handle.net/1928/13185

Files in this item

Files Size Format View Description
xiong diss 0712.pdf 5.590Mb PDF View/Open Dissertation PDF file

This item appears in the following Collection(s)

Show full item record

UNM Libraries

Search LoboVault


Advanced Search

Browse

My Account