Earth and Planetary Sciences ETDs

Publication Date

7-1-2014

Abstract

The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low-degree partial melting of late-stage LMO cumulates to generate Fe-rich partial melts. Chapter 3 presents datasets from NWA 032 that document one of the only occurrences of oscillatory zoning in lunar minerals. A model is presented that explains the zoning patterns in olivine and pyroxene by convection in a differentially cooling magma chamber. Constraints from mineral chemistry and isotopic compositions show that magma mixing was not a factor during this convection. Lastly, chapter 4 presents the results of high-pressure, high-temperature petrologic experiments on the compositions of the LAP 02205 group basalts, and NEA 003A, the latter of which is also one of the youngest basalts from the Moon. These results show that the LAP group basalts are likely the result of extreme olivine fractionation, whereas NEA 003A not only has the deepest known multiple saturation point amongst crystalline mare basalts, but also may be a near-primary melt. Possible parental melt compositions are calculated for these basalts, and models are presents for the petrogenesis of these basalts and discussed in the context of a cooling lunar mantle. These studies illustrate the importance of different LMO cumulate source regions in lunar magmatism at very different points in the thermal and magmatic evolution of the Moon.

Degree Name

Earth and Planetary Sciences

Level of Degree

Doctoral

Department Name

Department of Earth and Planetary Sciences

First Committee Member (Chair)

Agee, Carl

Second Committee Member

Sharp, Zach

Third Committee Member

Draper, David

Language

English

Document Type

Dissertation

Share

COinS