What do you mean- “design” a study?

- Studies don’t come in a box
- Many things to consider
- Decisions to make
 - None need be prohibitive or scary
 - But each one matters
 - Some will even seem automatic (yay!)
- “Study design” is just the sum of these
No study is perfect

- So let your goal be “good enough”… and exhale

So what’s involved?

- Settling on your research question/hypothesis
- Choosing an overall approach
- Deciding which data to gather
- And how many subjects you’ll need
- Reducing bias with randomization & blinding
- Then write the protocol
- Keep those pesky rules and expectations in mind
Time invested up front...

- Is time saved / not wasted during:
 - IRB approval process
 - data collection
 - analysis
 - writing
 - peer review

The research question

Begin with a basic idea
Keep an eye out for opportunities

- Here we do things this way, but at my old institution we did things that way
- Somebody’s passing comment or odd question
- Unresolved questions in literature: review article, intro, discussion section, etc
- Disagreements among colleagues: wanna bet?
- Interesting article: tweak it (this is almost always possible!)
- New-ish treatment with inexplicable popularity
- Planned change to a treatment pathway
- They say always/never do XYZ: evidence for Dr. They’s position?

Start informally

- Can I reduce the amount of LA used in this block and still retain effectiveness?
- Which grip is best for novices on their first efforts at mask ventilation?
- Does it matter which brand of block needle I use?
- Does this drug really reduce intraop blood loss?
- What’s the best sedation protocol for this particular set of pediatric imaging patients?
Hit the literature

Research idea

Literature

An example

Starting with outcomes selection
Compare treatments’ effect on postop pain

- Which treatment better controls postoperative pain?

Moving past “what’s better?”

- Formalize the comparison
- Consider all salient points of the setting
 - Which providers?
 - Which patient population?
 - What treatments/groups?
 - What outcome(s)?
Outcomes

- What will you measure?
 - One primary outcome
 - A few secondary ones

- Surrogate vs. “real” clinical outcomes (it’s a spectrum)
 - Lab values, etc
 - Complications, survival, pain-free time, etc

Compare treatments’ effect on postop pain

- Time to first request of pain meds
- Time to first report of any sensation
- Time to first report of pain
- Total opioid consumption, within XX time period
- Max pain score in XX time period; resting or dynamic
- Patient satisfaction overall, or specifically with pain control
- Proportion of patients who ever hit, say, ≥8 on pain scale
- Reduction of opioid-related side effects
- Etc.
- Why did you pick this one?
Why not just test all of ‘em?

- Problem of multiple comparisons
- Shorthand: at 0.05 significance level, we have a 95% chance of being “right” on a given test
- With two tests, the chance of being right twice (no errors) is just over 90%
- Ten: 60%
- Twenty: 36% (that’s a 64% chance of ≥1 spurious result!)
- So use statistical tests sparingly
- Adjustments are available, but they’re harsh

It’s a balance

- Clinical interest
- Ease of data collection
- Intended knowledge gap to fill

- That’s the whole point of this talk
Clinical significance

- Always keep this in mind

- I can design a study that will show that donuts increase the relative risk of thumb cancer by 3%

- Who cares?

xkcd.com/892/
2-tailed vs. 1-tailed

- **2-tailed analyses**
 - Is there any difference between these treatments?
 - Null hypothesis: they are equal
 - The default

- **1-tailed analyses**
 - We have some solid reason to think that A is better than B
 - Is that really the case?
 - Null hypothesis: they are equal, or B is better
 - Being more specific yields a p-value bonus ($p/2$)
 - Less common
Hypothesis/ Research Question

- Should be succinct but specific
 - We hypothesized that the addition of dexamethasone 8 mg to ropivacaine-based sciatic nerve block would result in a delay in patients’ first request for pain medication, as compared to preop IV administration of the same dose.

- Primary outcome
 - Time to first request of pain medication

- Secondary outcomes
 - Total opioid consumption within first 48 hours postop

Selecting the design
Some of the main types (for us)

- When patients are enrolled, and what happens
 - Prospective
 - Retrospective
 - Observational

- Comparison: superiority vs. equivalence vs. noninferiority
 - Are these different/ is one better?
 - Are they the same (within limits)?
 - Is this one at least not worse than that one?

Benefits and Costs

- Prospective
 - Randomization
 - Consent refusals

- Retrospective
 - Ease of data collection
 - Limited to what’s there

- Observational
 - 100% data capture!
 - Can’t manipulate treatment
More on Randomization

- From a scientific perspective, it’s almost always best
 - But maybe not logistically

- Or maybe it’s just not a good fit for your question

- Sometimes you just want to know how often something happens in the real world

- We’ll come back to this

Moving on to the comparison itself...

- Superiority

- Equivalence

- Noninferiority
Superiority trials

- But wait… let’s have a brief tangent

Confidence interval

- A statement of probability
- Usually a 95% CI
 - “The difference between the group means was 6.5 units (95% CI 3-10).”
- If we were to do this study many times, 95% of the resulting CIs would contain the true difference.
- If $p=0.05$, the 95% CI has zero at one end (e.g. 0 – 3 units)
- If $p > 0.05$, it spans 0
- If $p < 0.05$, it does not
- The CI for a 1-tailed test only omits 5% (say) at one end
OK, getting back to it…

Superiority trials

- So common they’re the default
- Do treatments A and B provide different results on this outcome?
- Hypothesis
 - A is different from B
- Null hypothesis
 - A and B are equivalent
- Hope to get a 95% CI that excludes 0
- Can be 2-tailed or 1-tailed
Equivalence trials

- Treatment A is cheaper, easier, etc than treatment B
- Are the clinical outcomes any different?
- Need an *a priori* clinically significant idea of “different”: Δ
- Hypothesis
 - $-\Delta < 95\% \text{ CI for difference} < \Delta$
- Null hypothesis
 - 95% CI contains Δ or $-\Delta$ (or both)
- Hope to get a 95% CI that fits within $\pm \Delta$
- Must be 2-tailed

Noninferiority trials

- Hybrid of superiority and equivalence; imagine a 1-tailed equivalence trial
- Is treatment A *at least not worse* than treatment B?
 - Shorthand: $A - B \geq 0$
- Still need Δ
- Hypothesis
 - $-\Delta < 95\% \text{ CI for difference}$ (which is infinite on this side)
- Null hypothesis
 - 95% CI includes $-\Delta$
95% CI results and trial types

Results: groups’ difference

<table>
<thead>
<tr>
<th>-Δ</th>
<th>0</th>
<th>Δ</th>
</tr>
</thead>
</table>

Reject null hypothesis?

- **Superiority**
 - ✓
 - ✓-ish

- **Equivalence**
 - ✓

- **Noninferiority**
 - ✓

✓, but…

Data to gather
So many data...

- How do I select from the universe of data?

Where to start?

- Age, sex, BMI, etc unless there’s a reason not to
- The outcomes of interest (obviously)
- So many confounders….
 - Beware the rabbit hole
 - Show your groups to be similar enough
 - Consider excluding problem people
- Try to keep data collection simple
 - Number of sources of info; time investment
 - Certain data require HIPAA authorization (⇒ consent)
 - Worth it?
OK, I’ve decided what data to gather

How many times must I do it? And to whom?

What’s a power analysis?

- Usually, an estimate of the needed sample size
- Based on certain knowledge or assumptions
 - Desired power
 - Type I error rate: α (the p value threshold)
 - Expected effect size (for specific outcome!)
 - Expected variation within groups
 - The chosen statistical test
- Always ask about this; journals and IRB expect it
Power analysis

- **Power**
 - Chance of avoiding a Type 2 error: i.e. false negative.
 - $1 - \beta$ (where β = type 2 error risk)
 - Usually set at 80%; typically higher with high-benefit studies
 - “If there’s anything there, will we see it?”

- **Alpha (significance threshold)**
 - Chance of having a Type I error: i.e. false positive.
 - Usually set at 0.05; lower with high-risk studies
 - “Will our result be reliable?”

Power, continued

- **Effect size**
 - An estimate of the expected difference between groups

- **Expected variation (e.g. standard deviation)**
 - Within-group variation

- **Where to get these?**
 - Literature
 - Pilot study
 - Clinical experience
 - Minimal clinically-significant effect
Sometimes you really don’t know

- What then?
- “Convenience sample”
- Should still justify the chosen sample size
- With 2 of 3, can calculate the third (all else equal):
 - Sample size
 - Power
 - Effect size (maybe as a multiple of standard deviation)

Equivalence vs. superiority: sample size

- Superiority trials are more efficient

- Rule of thumb: allow 4x sample for equivalence trial as in a corresponding superiority trial
The caveat

- With a superiority trial, a negative result (no stat-sig difference) does *not* mean the treatments are equivalent!
 - Unless the 95% CI somehow managed to be within $\pm \Delta$ anyway

Inclusion and exclusion criteria

- **Inclusion**
 - Usually a shorter list
 - Who do you want?
 - Age ≥ 18, having surgery, planned nerve block, parturients, etc

- **Exclusion**
 - Can be a longer list
 - Who do you *not* want?
 - E.g. LA allergy in a nerve block study, chronic pain, dementia, prisoners, etc

- **Balance “clean” data vs. generalizability**
Benefits, etc

- Helps mitigate systematic error
 - Learning effects
 - Staff changes
 - Seasonal variation in patient health
 - Weird stuff that nobody thought of
 - Etc.

- When might it be inappropriate?
 - Investigating effect of a nonrandomizable demographic variable
 - Observational or retrospective studies
What to do

- Use a randomization service:
 - random.org
 - randomization.com
- Conceal allocations until the last moment
 - E.g. sealed numbered envelopes
- Blinding
 - Patient, provider to extent possible, assessor
 - Semiblinded data for analyst (e.g. group 1 vs group 2)

Examples of bad “randomization”

- Coin toss by investigator
- A – B – A – B – A – B
 - Etc., such as AAAA… BBBB…
- Visible allocation list
- Allocation bias is almost never deliberate, but it still affects results
Writing the protocol

What does a protocol do?

- It describes the planned study
 - Justification, background
 - Goals
 - Methods
 - Sample
 - Outcomes
 - Logistics
 - Standards for observations
 - Analysis factors
 - It’s the cookbook
Stuff to keep in mind

- Balance of competing constraints
 - Logistics
 - Sample size
 - Consent
 - Randomization
 - Data-collection duration
 - Not a perfect world, and you don’t have infinite money
 - Circumstances vary. One study’s awesome approach may be terrible in another
More stuff

- Anticipate the criticism: what could be done better?
 - Think of some articles you’ve found to be less than convincing
 - What would happen if you made small changes?
 - Stay flexible during planning
 - Err on the side of simplification
 - What would this study look like under a different strategy: observational, retrospective, prospective?
 - Can you still answer your research question?
 - Is another approach better, cheaper, faster, more awesome?

The protocol

- Background
- Hypotheses
- Outcomes primary and secondary
- Sample
 - Inclusion/exclusion criteria
 - Specific or general sample? Intended generalization
 - Power analysis
- Stated standards for observations
 - Obviously needed for subjective data
 - Objective data: specified time points, methods for observation…
Protocol, continued

- Data management
 - How will it be kept? When will identifiers be removed?

- Planned analyses and statistics
 - p threshold
 - Any interim analysis?
 - Be warned: any post-hoc analyses must be clearly labeled in the poster/manuscript
 - We’re not discussing statistical techniques today

Keeping important people happy
Regulatory stuff, etc

- IRB
 - CITI, COI training
 - Consent language
- Clinicaltrials.gov
 - Many journals require prospective registration of clinical trials
- CONSORT diagram
 - Keep a count of exclusions/ consent refusals/ loss to followup

CONSORT diagram
Regulatory stuff, etc

- IRB
- Clinicaltrials.gov
- CONSORT diagram
- DSMB?
- FDA?
- Pre-Award?
- VA?

It’s not so scary
Seriously – it’s not

- There is still lots of room for small studies

- “In a given situation, should I do this, or should I do that?”
 - How would you know?
 - Now you’re halfway there

Recommended

- “Bad Science” by Ben Goldacre
- BMJ “How to read a paper” collection online
- “How to Lie with Statistics” by Darrell Huff (classic)
This is the end

My only friend, the end